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A common soil handling
technique can generate incorrect
estimates of soil biota effects on
plants

Introduction

An active area of research seeks to understand how soil biota
effects on plants vary across experimental factors (i.e. regions,
treatments). The study biotas are obtained by gathering soil
sample(s) from randomly selected location(s) within each exper-
imental unit, with an experimental unit being a site within a study
region or a field plot of a manipulative experiment. Then, plant
growth is measured in glasshouse containers housing soil and
biota from the various sites or plots. Results of these glasshouse
bioassays are sensitive to a common soil handling decision. In
particular, it is common to either: (1) fill each container with soil
from one experimental unit (e.g. Callaway et al., 2004; Hood
et al., 2004; Kardol et al., 2006; Wardle et al., 2012), or (2) fill
each container with a mixture of soils from multiple experimental
units (i.e. all sites within a region, all plots that received the same
treatment) (e.g. Van der Putten et al., 1993; Nijjer et al., 2007;
Felker-Quinn et al., 2011; Pendergast et al., 2013; Rodr�ıguez-
Echeverr�ıa et al., 2013; Yang et al., 2013; Gundale et al., 2014;
Pizano et al., 2014; Hilbig & Allen, 2015; Larios & Suding,
2015) (Fig. 1). We define samples generated from these two
approaches as ‘individual soil samples’ (ISS) and ‘mixed soil
samples’ (MSS). The term ‘individual soil sample’ is slightly
misleading, as ISS are often formed by mixing multiple samples
gathered from the same experimental unit (i.e. pooling subsam-
ples). Combining subsamples from individual experimental units
is a perfectly acceptable approach. Conversely, the express
purpose of this paper is to illustrate that, without exception, the
MSS approach of mixing together soils from multiple experi-
mental units (Fig. 1) is fatally flawed. Hypotheses regarding
differences among regions or treatments cannot be legitimately
tested by the MSS approach of mixing together soils from
multiple sites within regions or multiple plots receiving the same
treatment. The importance of this point is clearly underappre-
ciated: we estimate, 52% of published studies use MSS in place of
the correct ISS methodology (of 76 evaluated studies using ISS or
MSS, 40 used MSS) (K. O. Reinhart & M. J. Rinella,
unpublished, 2015).

Estimating treatment (e.g. region, nutrient) differences entails
computing residual variance. Residual variance describes variation

not explained by treatments, and it is needed to compute relevant
statistics (i.e. P-values, confidence intervals). In experiments
considered here, there are two contributors to residual variance in
plant growth: (1) spatial variation in soil biotas (i.e. site-to-site
variation not explained by region, plot-to-plot variation not
explained by treatment) and (2) glasshouse variation owing to
environmental gradients (e.g. temperature) and plant genetics.
With the ISS approach (Fig. 1), having two contributors to
residual variance poses no unique analytic challenges, and
standard regression and analysis of variance (ANOVA)
approaches give correct inferences. With the MSS approach, all
information regarding residual variation in soil mutualists and
pathogens is lost, and if this variation is nonzero, MSS and ISS are
guaranteed to give different inferences, with the MSS inferences
being incorrect. More specifically, if residual variation in
mutualists and/or pathogens is nonzero, statistical estimates from
MSS will be falsely precise and evidence for differences among
treatments (e.g. regions, nutrients) will be weaker than reported.
Assuming only factors being studied cause soil mutualists/
pathogens to vary spatially is highly unrealistic, particularly given
that plant disease expression (e.g. Martin & Loper, 1999) and soil
microbe compositions (e.g. Ettema & Wardle, 2002; Ritz et al.,
2004) are known to vary widely across even small spatial scales
(i.e. < 1.0 m).

Exploring effects of mixing soils

While inferences from MSS are a priori expected to be falsely
precise (i.e. confidence intervals incorrectly narrow, P-values
incorrectly small), the magnitude of the inaccuracy is data-
dependent. Unfortunately, the magnitude of the inaccuracy
arising from MSS cannot typically be quantified, because the
necessary information (i.e. soil biota abundance data for each
field unit and data describing relationship between soil biota
abundance and plant performance) is not collected in most
studies. Data from Reinhart & Clay (2009) and Reinhart et al.
(2010a) provide a rare opportunity to evaluate the magnitude of
inferential inaccuracies arising from MSS approaches. Their data
describe site-to-site variation in soil pathogen (Pythium spp.)
densities (propagules/g of soil) and the relationship between
these densities and biomass of the host tree Prunus serotina in a
growth chamber. Pythium densities were measured at 10 eastern
US sites separated by a maximum distance of 700 km. While
P. serotina was subjected to only one Pythium species in the
growth chamber (i.e. P. sylvaticum), we believe P. sylvaticum is
a suitable proxy for what may have been multiple Pythium
species sampled from the field (Reinhart et al., 2010a).
Pythium sylvaticum is a widely distributed pathogen with effects
on P. serotina comparable to other Pythium spp. (Reinhart et al.,
2010b).
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Simulated experiments

We used the data described in the previous paragraph to
parameterize 100 simulated experiments. The experiments were
designed to estimate the pathogenicity difference (i.e. plant
biomass difference) between two regions, Region 1 and Region 2.
Therefore, our simulation is particularly relevant to recent studies
that used MSS to test whether soil biota effects varied between
two regions (Yang et al., 2013; Gundale et al., 2014). The true
pathogenicity difference between Region 1 and Region 2 was
zero: for both regions, the pathogen density distribution was that
estimated from the 10 sites of Reinhart & Clay (2009) and
Reinhart et al. (2010a). Because the pathogen density distribu-
tion was equivalent for both regions, a proper scheme for
handling soils and analyzing data should tend to suggest no
pathogenicity difference between regions. For each simulated
experiment we followed steps 1–4:

Step 1 Simulated pathogen densities (propagules/g of soil)
occurring at 10 sites in Region 1 and 10 sites in Region 2. This
entailed drawing 10 values from the pathogen density proba-
bility distribution and assigning them to Region 1 and then
sampling 10 additional values from the same distribution and
assigning them to Region 2.
Step 2 Simulated one glasshouse container pathogen density
value for each site (2 regions9 10 sites = 20 values). This was
done in two ways corresponding to ISS and MSS. For ISS, the
field site and glasshouse container values were identical. For
MSS, pathogen densities for Region 1 and 2 containers were set
equal to regional means. This replacing of raw values with
regional means reflected mixing equal quantities of soil from
each site within a region and filling containers with the mixture.
Step 3 Simulated one plant biomass value for each glasshouse
container. Plant weights were a function of container pathogen
densities (Eqn 1).
Step 4 Computed 95% confidence intervals quantifying the
plant biomass difference between Region 1 and Region 2. Steps
1–4 were repeated 100 times.

Parameterizing the simulation

This section describes technical details of parameterizing the
simulation and may be skipped by readers seeking a general
understanding. Pythium spp. were found at only three of 10 sites,
and at these sites, the mean and standard deviation of pathogen
density was 3.9 and 1.8 log(propagules/g of soil), respectively.
Correspondingly, our system for simulating pathogen densities for
regions (Step 1) was to generate 10 Pythium presence/absence
values with presence probability 0.3. (Our results were similar in an
additional simulation that assumed Pythium occurred at all sites.)
For sites simulated to have Pythium,Pythium density was simulated
as Exp[N(3.9, 1.8)] whereN(l,r) denotes the normal distribution
with, mean l, standard deviation r. The growth chamber biomass
data from 22 pots of Reinhart et al. (2010a) were well-
approximated by:

log yi �N �1:8� 0:2 � log½xi þ 1�; 0:13ð Þ; Eqn 1

where xi isP. sylvaticum density (propagules/g of soil) and yi ismean
P. serotina shoot biomass (g/plant) per pot in pot i = 1, . . ., 22,
respectively.

Computing the confidence intervals (Step 4) involved fitting the
following simple linear regressionmodel to each simulated dataset:

log zi �N B0 þ B1ri ;rð Þ; Eqn 2

where zi is simulated P. serotina shoot biomass (g/plant) for pot
i = 1, . . ., 20, and ri is an indicator equaling 0.0 forRegion 1 and1.0
for Region 2. It is easy to show that B1 is the following log response
ratio:

log
region 1 mean biomass=plant

region 2 mean biomass=plant

� �
: Eqn 3

The analytical summaries of interest in Step 4 were 95%
confidence intervals on this log ratio. Negative log response ratios
indicate plant biomass was lower with soil originating fromRegion
1 than Region 2 and vice versa for positive values. Mathematica 9
code (Wolfram Research Inc., Champaign, IL, USA) for con-
ducting the simulation is provided (Supporting Information
Notes S1).

Simulation results

It is critical to recall that the simulation was set up such that there
was no pathogenicity difference between the two regions. Thus, for
any given simulated experiment, a proper 95% confidence interval
on the soil origin effect has a 95% chance of overlapping the zero
line (Fig. 2). It follows that if propermethods are used, there should
be a tendency to detect no difference in pathogenicity between
regions, and 95 of our 100 simulated confidence intervals should
overlap zero. (Because of sampling variability, the number need not
be exactly 95.) A confidence interval that fails to overlap zero
represents a false rejection of the null hypothesis of no difference
between regions (i.e. type I error).With the ISS approach, 97 of 100
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Fig. 1 Diagram of two approaches for testing effects of soil biota on plant
growth. Arrows indicate movement of soil from field plots to glasshouse
containers.
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confidence intervals overlapped zero (Fig. 2a), thereby indicating
the reliability of this approach. Conversely, the MSS approach
performed very poorly, leading to a false rejection of the null
hypothesis in 50 of 100 experiments (Fig. 2b). This poor
performance occurred because mixing soil samples eliminated
site-to-site variation in soil biota, thereby leading to falsely precise
estimates. This can be seen by comparing the narrow MSS
confidence intervals with the broader ISS confidence intervals
(Fig. 2).

Conclusions

Soil handling decisions may dramatically affect conclusions of
experiments seeking to quantify effects of soil biota on plants. Our
results lead us to question results of replicated field studies that use
MSS approaches to assess effects of soil biota on plant growth
(e.g. Van der Putten et al., 1993; Nijjer et al., 2007; Felker-Quinn
et al., 2011; Pendergast et al., 2013; Rodr�ıguez-Echeverr�ıa et al.,
2013; Yang et al., 2013; Gundale et al., 2014; Pizano et al., 2014;
Hilbig & Allen, 2015; Larios & Suding, 2015). In the types of
studies we describe in this paper, a one-to-one correspondence
should be maintained between field units (i.e. plots, sites) and
glasshouse containers. Finally, for the reasons described in this
paper, inferences from all studies (e.g. soil chemistry, soil
microbial community composition), not just soil biota effects
studies, are nearly certain to be invalid if they are derived by
performing tests on mixtures of soils from multiple experimental
units.
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Supporting Information

Additional supporting information may be found in the online
version of this article.

Notes S1Mathematica code for simulation.
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functionality of any supporting information supplied by the
authors. Any queries (other than missing material) should be
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